Prediction Errors in Learning Drug Response from Gene Expression Data – Influence of Labeling, Sample Size, and Machine Learning Algorithm
نویسندگان
چکیده
Model-based prediction is dependent on many choices ranging from the sample collection and prediction endpoint to the choice of algorithm and its parameters. Here we studied the effects of such choices, exemplified by predicting sensitivity (as IC50) of cancer cell lines towards a variety of compounds. For this, we used three independent sample collections and applied several machine learning algorithms for predicting a variety of endpoints for drug response. We compared all possible models for combinations of sample collections, algorithm, drug, and labeling to an identically generated null model. The predictability of treatment effects varies among compounds, i.e. response could be predicted for some but not for all. The choice of sample collection plays a major role towards lowering the prediction error, as does sample size. However, we found that no algorithm was able to consistently outperform the other and there was no significant difference between regression and two- or three class predictors in this experimental setting. These results indicate that response-modeling projects should direct efforts mainly towards sample collection and data quality, rather than method adjustment.
منابع مشابه
Machine Learning Algorithm for Prediction of Heavy Metal Contamination in the Groundwater in the Arak Urban Area
This paper attempts to predict heavy metals (Pb, Zn and Cu) in the groundwater from Arak city, using support vector regression model(SVR) by taking major elements (HCO3, SO4) in the groundwater from Arak city. 150 data samples and several models were trained and tested using collected data to determine the optimum model in which each model involved two inputs and three outputs. This SVR model f...
متن کاملTransparent Machine Learning Algorithm Offers Useful Prediction Method for Natural Gas Density
Machine-learning algorithms aid predictions for complex systems with multiple influencing variables. However, many neural-network related algorithms behave as black boxes in terms of revealing how the prediction of each data record is performed. This drawback limits their ability to provide detailed insights concerning the workings of the underlying system, or to relate predictions to specific ...
متن کاملStock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملThermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کاملThermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کامل